科技奖励
1.冻结壁强度及其参数研究,1992年获能源部科技进步三等奖,排名2/5
2.南京地铁冻融土物理力学性能及人工冻结关键技术研究,2006年江苏省科技进步三等奖,排名2/5
3.复杂环境下浅埋暗挖隧道穿越薄富含水层的冻结技术研究,2014年河南省科技进步三等奖,排名2/5
4.宁波轨道交通软土工程特性研究及应用,2014年获浙江省科技进步二等奖,排名9/13
5.复杂软弱地层盾构隧道冻结法施工关键技术与应用,2015年中国岩石力学与工程学会科技进步一等奖,排名1/13
6.长三角地区富含水地层盾构隧道建造人工冻结法关键技术”,2015年教育部科技进步二等奖,排名1/14
7.南京地铁大直径盾构隧道穿越长江关键技术研究”,2015年江苏省科技进步三等奖,排名2/5
8.高水压砂层中大直径盾构隧道控沉与防水关键技术”,2016年天津市科技进步一等奖,排名2/14
9.地铁盾构隧道端头加固及联络通道冻结法施工关键技术研究,2019年天津市科技进步三等奖,中国公路建设行业协会科技进步二等奖,排名2/5
10.富水软弱地层近接叠交隧道与近贴下穿有压管道关键技术与应用,2020年江苏省科技进步二等奖,排名2/9
11.软弱富水地层60m级超长联络通道冻结法施工关键技术”,2023年中国岩石力学与工程学会科技进步二等奖,排名1/10
代表性论著(第一作者或通信作者)
1. 盾构隧道施工对周边环境影响及灾变控制(专著). 北京: 科学出版社, ISBN 978-7-03-039850-5,2014
2 城市地下工程人工冻结法理论与实践(专著). 北京: 科学出版社, ISBN 978-7-5038-8650-8,2015
3.冻结壁三轴流变变形的模试验研究拟,煤炭学报 1991.NO.2
4.软粘土冻土挡墙蠕变特征及其设计,土木工程学报,1997,NO.4
5.冻土力学性能与声波参数相关性研究,岩土工程学报,1997,NO.
6.卸压槽治理井壁破裂研究,岩土工程学报,1998,NO.4
7.高流速地下水流地层冻结壁形成的研究,岩土工程学报, 2001,23(2)
8. Numerical simulation of frost heave with coupled water freezing, temperature and stress fields in tunnel excavation, Comput and Geotechnics,2006,33(6-7)
9.盾构隧道开挖对邻近桩基影响数值分析,岩土工程学报,2008,NO2
10.冻融作用对粘土力学性能影响的试验研究,岩土工程学报,2009,31(11)
11.复杂环境下浅埋暗挖隧道穿越薄富含水层的冻结温度场研究,岩土力学,2010,31(S1)
12.盾构隧道施工对邻近承载桩基影响研究,岩土力学,2010,31(12)
13.长距离液氮冻结加固高承压富含水层温度实测研究,岩土工程学报,2012,34(1)
14.大型多功能冻土-结构接触面循环直剪系统研制及应用,岩土工程学报,2013,35(4)
15.南京地区冻结粉质黏土邓肯–张模型参数试验研究,岩石力学与工程学报,2014,33(s1)
16.冻土与结构接触界面层力学试验系统研制及应用,岩土力学,2014 35(12)
17.Cyclic direct shear behaviors of frozen soil–structure interface under,constant normal stiffness condition, Cold Regions Science and Technology,102 (2014)
18.Impacts of surface roughness and loading conditions on cyclic direct shear behaviors of an artificial frozen silt–structure interface. Cold Regions Science and Technology,Volumes 106–107, October–November 2014
19.大直径杯型冻土壁温度场数值分析,岩土力学,2015,36(2)
20.冻黏土与结构接触界面层单剪力学特性试验,农业工程学报,2015, 31(9)
21. 冻土与结构接触面剪切损伤模型研究,岩土力学,2016,37(5)
22.人工冻融软黏土微观孔隙变化及分形特性分析,岩土工程学报,2016, 38(7)
23.人工冻结砂土与结构接触面冻结强度试验研究。岩石力学与工程学报,2016,35(10)
24.Cyclic direct shear behaviors of an artificial frozen soil-structure interface under constant normal stress and sub-zero temperature,Cold Regions Science and Technology 133 (2017)
25.Structural and VolumetricShrinkage of Clay due to Freeze-Thaw by 3D X-ray Computed Tomography ,Cold Regions Science and Technology 138(2017)
26.软弱地层联络通道冻结法施工温度及位移场全程实测研究,岩土工程学报,2017,39(12)
27.冻土与结构接触面冻结强度压桩法测定系统研制及试验研究,岩土工程学报,2017,40(9)
28.冻土与结构接触面次峰值冻结强度试验研究[J]. 岩土力学, 2018, 39(6)
29.racterization of freeze–thaw effects within clay by 3D X-ray Computed Tomography ,Cold Regions Science and Technology 148(2018)
30.Experimental research on adfreezing strengths at the interface between frozen fine sand and structures Scientia Iranica Transactions A:Civil Engineering, 2018, 25(2)
31.土与结构接触面冻结强度压桩法测定系统研制及试验研究,岩土工程学报,2019,41(1)
32.粉质黏土冻土三轴强度及本构模型研究,土木工程学报,2019,52(s1)
33.Ground temperature characteristics during artificial freezing around a subway cross passage,Transportation geotechnics,20 (2019)
34. Impact of Freeze-Thaw on the Physical Properties and Compressibility of Saturated Silty Clay,Cold Regions Science and Technology,168 (2019)
35.A model for evaluating settlement of clay subjected to freeze-thaw under overburden pressure,Cold Regions Science and Technology,173(2020)
36.Electrical Properties of Frozen Saline Clay and Their Relationship with Unfrozen Water Content,Cold Regions Science and Technology ,178(2020)
37.Characterizing Pore-Size Distribution of a Chloride Silt Soil during Freeze-Thaw Process Using Nuclear Magnetic Resonance Relaxometry,Soil Science Society of America Journal,2020,84(5)
38. Freeze-thaw Impact on Macropore Structure of Clay by 3D X-ray Computed Tomography,Engineering Geology,280 (2021)
39.An Artificial Freezing Technique to Facilitate Shield Tail Brush Replacement under High Pore-Water Pressure Using Liquid Nitroge,KSCE Journal of Civil Engineering (2021) 25(4)
40.Water and salt migration mechanism of saturated chloride clay during freeze-thaw in an open system [J]. Cold regions Science and Technology,186(2021)
41.Investigating Hydration Heat and Thermal Properties of MJS Treated Soil, KSCE,Geotechnical Engineering ,2022
42. Experimental study on the shear behavior of frozen cemented sand-structure interface,[J]. Cold regions Science and Technology,2022
43. Experimental study on deformation characteristics of chloride clay during freeze-thaw process in an open system,Cold regions Science and Technology,195(2022)
44. Characterizing Influence of Salt and Freeze-Thaw Cycle on Strength Properties of Clay,International Journal of Applied Mechanics,Vol. 13, No. 4 (2022)
45.Experimental investigation on the mechanical properties of thawed deep permafrost from the Kuparuk River Delta of the North Slope of Alaska,Cold regions Science and Technology,195(2022)
46.Cyclic shear behavior of warm and ice-rich frozen cemented sand-structure interface,Journal of materials Materials,2022, 15, 8756
47. Investigating static and dynamic properties of cemented soil after a freeze-thaw cycle under cyclic loading,KSCE,Geotechnical Engineering,(2023) 27(3)
48.Characterizing Unfrozen Water Content of SalineSilty Clay During Freezing and Thawing Based on Superposition of Freezing Point Reduction,Cold Regions Science and Technology ,213 (2023)
49.Multiscale analysis of pore structure in clay due to freeze-thaw ,Case Studies in Construction Materials ,19 (2023)
50.Impact of MJS Treatment and Artificial Freezing on Ground Temperature Variation: Geomechanics and Engineering, Vol.32,No.3(2023)
51.Experimental investigation on dynamic characteristics of fiber-binder modified subgrade filler after freezing-thawing under cyclic loading,transportation geotechnics ,2023.01
52.A contrastive analysis of cumulative plastic deformation and critical dynamic stress of natural and fiber-binder reinforced subgrade filler after different freeze-thaw cycles,Materials, 2023, 16, 1520
53.Effects of freeze–thaw cycles on the shear stress induced on the cemented sand–structure interface, Construction Building and Materials,Volume 371, 31 March 2023
54.Strength damage analysis on cement-and-fly ash stabilized organic soils subjected to freeze-thaw cycles,International Journal Of Pavement Engineering, 2024, 25(1)
55.Multiscale analysis of pore structure in clay due to freeze-thaw ,Case Studies in Construction Materials 19 (2023)
56.含盐量及冻融条件对冻融氯盐粉质黏土静动强度特性影响研究, 岩土力学,2024,45(S)
57.Experimental study on strength characteristics and constitutive relationship of frozen chloride silty clay,Cold Regions Science and Technology, 219(2024)
58.Influence of Freeze-thaw Cycles on Stress-strain Characteristics and Microstructure of Cement and Fly ash Stabilized Organic Soil,Geomechanics and Engineering, An International Journal,2024,39(6)
59.Freeze-thaw effects on pore structure of clay by 3D X-ray computed tomography and mercury intrusion porosimetry,Cold Regions Science and Technology,225(2024)
60.Strength and microscopic pore structure characterization of cement-fly ashstabilized organic soil under freeze-thaw cycles,Construction and Building Materials,420(2024)
61.Investigating Static Properties and Microscopic Pore Structure Characteristics of Rubberized Cement-Soil under Freeze-Thaw Cycles,Journal of Cleaner Production,Construction and Building Materials 458 (2025)
主编标准
1.《城市轨道交通工程盾构隧道端头冻结法技术标准》T/JSTJXH13-2022
2.《城市轨道交通工程联络通道冻结法技术标准》T/JSTJXH14-2022